

Ref: 02425-05001-32010

December 22, 2005

Ms. Joan Fleck North Coast Regional Water Quality Control Board 5550 Skylane Boulevard, Suite A Santa Rosa, CA 95403

Re: Special Groundwater Sampling Report, Former Mead Clark Lumber Company, Third and Railroad Streets, Santa Rosa, California, NCRWQCB Case No. 1TSR016

Dear Ms. Fleck:

On behalf of our client, the Mead Clark Lumber Company (Mead Clark), Winzler & Kelly Consulting Engineers (Winzler & Kelly) is presenting the results of the special groundwater sampling activities performed on May 11 and 20, 2005, at the Former Mead Clark Lumber Company located at Third and Railroad Streets, Santa Rosa, California (Figures 1 and 2). The special groundwater sampling was performed to characterize contaminants and determine responsibility of contaminants as mentioned in the March 29, 2005 letter (Appendix A) from the North Coast Regional Water Quality Control Board (NCRWQCB).

SPECIAL GROUNDWATER SAMPLING ACTIVITIES

The Site-Specific Sampling Procedures, provided in Appendix B, describe in detail all of the sampling activities that were performed at the site on May 11 and 20, 2005. A brief summary of these activities are also provided below.

FIELD ACTIVITIES

Personnel Present: Blaine Tech Services (contracted by Winzler & Kelly) measured

groundwater levels, and developed and purged the groundwater monitoring wells to be sampled. Winzler & Kelly and Kennedy/Jenks

Consultants personnel collected the groundwater samples.

Depth-to-Groundwater: An electronic water level meter was used to measure the depth-to-

groundwater in each monitoring well after allowing the groundwater in each well to equilibrate to atmospheric pressure for a minimum of 20

minutes.

Well Development: On May 11, 2005, monitoring wells MW-1 and monitoring wells GW-

22, GW- 26A, GW-29, and GW-35 were redeveloped by Blaine Tech Services under the direction of Kennedy/Jenks Consultants and Winzler & Kelly. These wells were redeveloped because they had not been

sampled within the past year. Well development data sheets are provided

in Appendix C.

Ms. Joan Fleck December 22, 2005 Page 2

Purging: Prior to sampling, each monitoring well was purged a minimum of three

well-casing volumes or until the wells dewatered. As mentioned in the NCRWQCB letter, monitoring well GW-29 is screened across two permeable water bearing zones (Aquifer A and B). Therefore, GW-29 was purged at 25 feet at a slow flow speed so that only Aquifer A was

purged.

Groundwater Sampling: On May 20, 2005, Winzler & Kelly and Kennedy/Jenks Consultants

personnel used new disposable bailers to collect and transfer all groundwater samples from monitoring wells into the appropriate

laboratory-supplied, certified clean sample containers.

Chemical Analysis: Analytical Sciences Laboratory (Analytical Sciences) of Petaluma,

California (a California-certified laboratory) picked up groundwater samples at the site and analyzed the groundwater samples collected from each monitoring well for total petroleum hydrocarbons as gasoline (TPH-G), as diesel (TPH-D), and as motor oil (TPH-MO) by EPA Method 8015M with silica gel cleanup, and for volatile hydrocarbons by EPA

Method 8260B (full list).

SPECIAL GROUNDWATER SAMPLING RESULTS

Prior to sampling, depth-to-groundwater was measured in each well. The groundwater elevation data is presented in Table 1. Historical groundwater data from the monitoring and sampling events conducted by Winzler & Kelly since 2001 has indicated a south-south east primary flow direction with an occasion south-southwestern.

During purging activities, the parameters of pH, conductivity, temperature, turbidity, and oxidation-reduction potential (ORP) were monitored in the groundwater extracted from the wells. A summary of these indicator parameters is provided in Table 2.

Laboratory analysis of groundwater samples collected from monitoring wells GW-22, GW-26A, and GW-35 did not quantify any constituents of concern (COCs) above the laboratory's reportable detection limits. COCs were quantified in groundwater samples collected from monitoring wells MW-1 (RWQCB monitoring well) and GW-29 at concentrations of 3,700 and 110 µg/L, respectively. The analytical laboratory quantified the reported TPH diesel concentrations from RWQCB well MW-1 as "The sample chromatogram does not exhibit a chromatographic pattern of diesel. Higher boiling points of weathered gasoline are present". The laboratory also communicated that the reported TPH gasoline concentration was also clearly weathered gasoline. No methyl tert-butyl ether (MTBE) was identified in the samples collected during this event. A comprehensive summary of the analytical results of groundwater sampling is provided in Table 3. Figure 3 depicts the concentrations of TPH-G, benzene, and MTBE that were detected in the groundwater samples collected on May 20, 2005.

The laboratory QA/QC included the use of method blanks to exclude false-positive analyses and the use of laboratory control samples to evaluate the percentage recovery of known analyte spikes. The recovery

Ms. Joan Fleck December 22, 2005 Page 3

percentages for all of the sample analytes were within the laboratory's acceptance ranges. The complete laboratory report, QA/QC data, and the chain-of-custody form are included in Appendix D.

GEOTRACKER DATA ENTRY

As required by Assembly Bill AB2886, Winzler & Kelly has submitted the May 20, 2005 groundwater well measurement file to the GeoTracker database. An upload verification form is provided in Appendix E. Winzler & Kelly will submit the analytical data for the May 20, 2005 event upon receipt of the EDF report from Analytical Sciences as well as this report.

If you have any questions or comments regarding this project, please contact David J. Vossler, Project Manager, at (707) 523-1010.

Sincerely,

WINZLER & KELLY

Pon Xayasaeng

Environmental Engineer

Kent O'Brien, PG, CEG Senior Project Geologist

sc

Attachments

Figures:

Figure 1 – Location Map

Figure 2 – Site Map

Figure 3 – Petroleum Hydrocarbon Concentrations in Groundwater

Tables:

Table 1 – Water Level Data and Well Construction Details

Table 2 – Field Indicator Parameters

Table 3 – Groundwater Sample Analyses Results

Appendices:

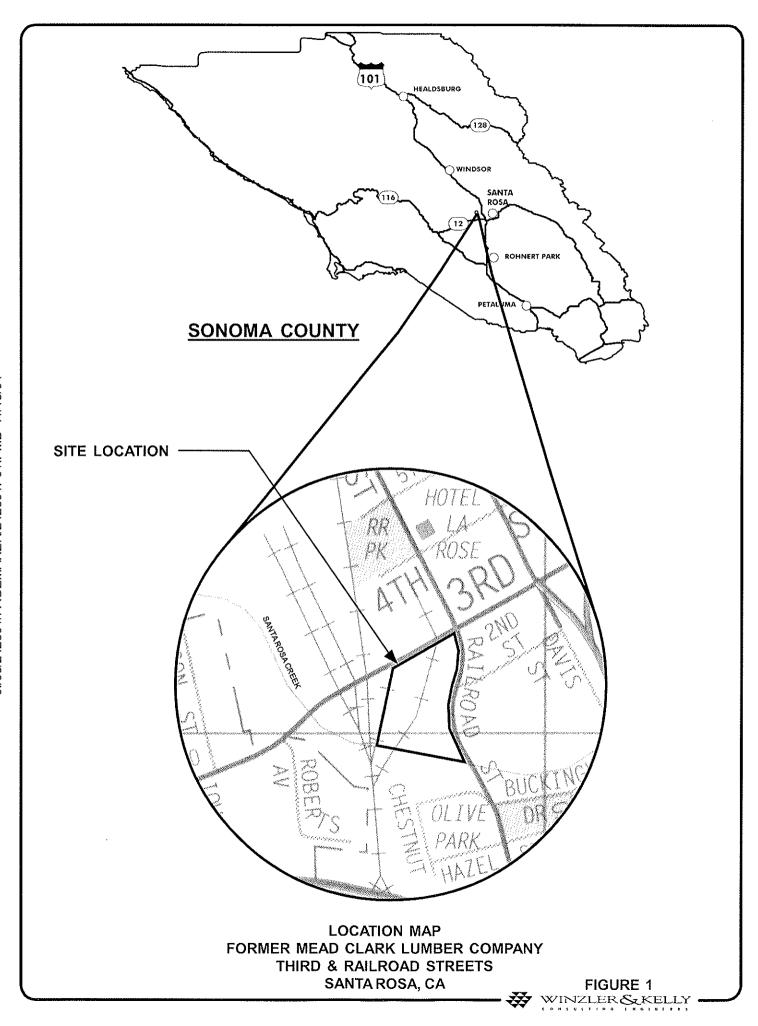
Appendix A – Agency Correspondence

Appendix B – Site-Specific Field Procedures

Appendix C – Well Development Data Sheets

Appendix D - Analytical Laboratory Report

Appendix E – GeoTracker Upload Verification



Ms. Joan Fleck
December 22, 2005
Page 4

Mr. Kevin Destruel, Mead Clark Lumber Company, P.O Box 529, Santa Rosa, CA 95402
 Mr. John F. DeMeo, Law Offices of DeMeo, & DeMeo, 565 West College Avenue, Santa Rosa CA 95401

Ms. Laura Kennedy, Kennedy Jenks, 622 Folsom Street, San Francisco, CA 94107

Table 1. Water Level Data and Well Construction Details

Former Mead Clark Lumber Company Third and Railroad Streets Santa Rosa, California

Well ID	Date	Groundwater Elevation	Depth-to- Water	Top of Casing Elevation (Mean Sea Level)	Free Product Thickness	Screen Interval	Sand Pack Interval	Bentonite/ Grout Interval
				Levely		fe	eet	
MW-1	5/20/2005		24.21		NM			
		· · · · · · · · · · · · · · · · · · ·						
GW-22	5/20/2005		18.61		NM	9.5-20.0	6.0-24.0	0.0-6.0
GW-26A	7/25/2001	NM	NM	154.27	NM	10.0-30.0	9.0-31.0	0.0-9.0
Upper-A	10/29/2001	136.70	17.57	1	NM			
* *	1/30/2002 -	NINA	NINA]	NM		1	
	5/28/2004	NM	NM		INIVI			
	5/20/2005	139.10	15.17		NM			
								·
GW-29	5/20/2005		18.86		NM	7.0-40.5	6.0-41.5	0.0-6.0
					-			
GW-35	5/20/2005		15.47		NM	39.2-49.2	37.0-52.0	0.0-37.0

Notes:

NM = Not Measured

"" Well not surveyed

Top of Casing Elevations Surveyed by Winzler & Kelly on September 24, 2001. Elevations based on National Geodetic Survey Bench Mark U 106, located at the Santa Rosa Northwestern Pacific Railroad Station, with an elevation of 157.30 (NGVD 29) above mean sea level.

Table 2. Field Indicator Parameters

Former Mead Clark Lumber Company Third and Railroad Streets, Santa Rosa, California

Well ID	Sample Date	pН	Conductivity (uS/cm)	Turbidity (NTU)	Temperature (°F)	ORP (mV)
MW-1	5/20/2005	6.8	435	241	66.8	98
GW-22	5/20/2005	6.8	623	160	68.5	108
GW-26A	5/20/2005	6.6	660	9	67.0	194
GW-29	5/20/2005	6.6	444	2	67.6	76
GW-35	5/20/2005	7.1	631	1	69.0	111

Notes:

uS/cm = microSiemens per centimeter

NTU = nephalometric turbidity units

°F = degrees Fahrenheit

mV = millivolts

Table 3. Groundwater Sample Analyses Results Former Mead Clark Lumber Company Third and Railroad Streets, Santa Rosa, California

EDC or 1,2-DCA		0.12	<0.5	NA	NA	AN	NA	NA	0.1>	1.3	AN	NA	NA	NA	NA	0.1×	***	6.0	A'N	NA	NA	NA	NA	<1.0	<0.5	<0.5	NA	NA	NA	<1.0
Other Volatile Hydrocarbons		isopropyl benzene=39, n-propyl benzene=110, tert-butylbenzene=2.8, sec-butylbenzene=15, p-isopropyltoluene=2.8, n-butylbenzene= 24, naphthalene=3.7, All others <1.0. TBA <25	AN	N.A.	N.A.	NA	AN.	A'A	<1.0, TBA <25	٧Z	NA	NA	AN	NA	NA.	<1.0, TBA <25	AN	NA	NA	NA	A.V.	NA	NA	<1.0, TBA <25	AN	N.A	AN	NA	NA	<1.0, TBA <25
MTBE		o. V	Ϋ́N	AN	AN	NA	ΑΝ	NA	<1.0	N.A.	N.A	NA	ΝΑ	ΝΆ	AN	<1.0	NA A	NA	ΝΆ	NA	ΝA	NA	NA	<1.0	ΝΑ	ΑΝ	N.A.	NA	ΑΝ	<1.0
×		0. 	230	1.0	1.3	<0.5	3.8	<0.5	<1.0	510	06	260	61	22	- 79	<1.0	-69	4.7	AN	14	12	<1.5	2.2	0.1>	<0.5	5.8	<0.5	<1,5	<0.5	<1.0
ы	ug/L		96	<0.5	<0.5	<0.5	<1.5	<0.5	<1.0	6.0	020	320	6.7	0.1>	190	0.1>	39.5	<0.5	NA	5.6	<0.5	<1.5	3.4	0.1>	<0.5	1.5	<0.5	<1.5	<0.5	<1.0
T	•	0°17	27	1.7	<0.5	<0.5	2.1	<0.5	<1.0	20	21	<0.5	2.6	<1.0	4.0	<1.0	12.5	<0.5	NA	4.0	72	<0.5	<0.5	<1.0	<0.5	1.0	<0.5	<0.5	<0.5	<1.0
æ		3.9	315	<0.5	<0.5	<0.5	45	6.0	<1.0	1,800	1,000	2,200	250	8.3	140	<1.0	120	2.0	ΝΑ	75	7.5	<0.5	33	<1.0	<0.5	3.0	<0.5	<0.5	<0.5	<1.0
TPH-K		NA	<250	<50	<50	NA	NA	NA	NA	<500	<2,000	<1,250	NA	AN	NA	NA	<250	ΝΑ	<50	<500	NA	NA	NA	NA	<50	<50	NA	NA	AN	NA
трн-мо		<200.²							<2002							<200 -								<2002						<200 ²
TPH-D		1,000 1.2	NA	NA	NA	NA	Y'N	NA AN	<50	NA	NA	NA	NA	NA	NA	<50	NA	NA	V.V.	ŊĄ	NA	NA NA	NA A	<50	NA	NA	NA	NA	NA	<50
TPH-G		3,700	3,400	310	0\$≎	\$0	420	360	<\$0	6,600	3,000	4,900	2,100	700	4,900	<50	4,840	NA	770	1,400	2,400	<\$0	1,700	110	<50	54	\$00	<50	×100	<50
Analytic Methods		5030/8015M/8260B							5030/8015M/8260B					***************************************		5030/8015M/8260B								5030/8015M/8260B						5030/8015M/8260B
Date Sampled		5/20/2005	4/5/1988	8861/1/2	10/12/1988	1/11/1989	4/11/1989	6861/61//	5/20/2005	2/2/1988	7/1/1988	10/11/1988	6861/11/1	4/12/1989	7/19/1989	5/20/2005	4/25/1988	6/30/1988	7/3/1988	10/17/1988	6861/11/1	4/11/1989	6861/61//	5/20/2005	7/22/1988	10/11/1988	1/11/1989	4/11/1989	7/19/1989	5/20/2005
Well ID		MW-1	GW-22							GW-26A							GW-29								GW-35					

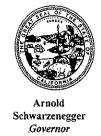
ABBREVIATIONS:

NA = Not analyzed
TPH-G = Toral petroleum hydrocarbons as gasoline
TPH-M = Toral petroleum hydrocarbons as diesel
TPH-MO = Toral petroleum hydrocarbons as diesel
TPH-MO = Toral petroleum hydrocarbons as motor oil
B = Benzene
T = Toluene
E = Eihyl benzene
X = Total xylenes
MTBE = Methyl tert-butyl ether
EDC or 1.2-Dichloroethane

NOTES:

1 or The sample does not exhibit a chromatographic pattern characteristic of diesel. Higher boiling point constituents of weathered gasoline are present.

2 = Silica gel cleanup was utilized for this sample prior to analysis.



California Regional Water Quality Control Board North Coast Region

Beverly Wasson, Chairman

http://www.waterboards.ca.gov/northcoast 5550 Skylane Boulevard, Suite A, Santa Rosa, California 95403 Phone: 1 (877) 721-9203 (toll free) • Office: (707) 576-2220 • FAX: (707) 523-0135

March 29, 2005

Mr. Kevin Destruel Mead Clark Lumber Company P.O. Box 529 Santa Rosa, CA 95402 Mr. Mike Grant Manager, Environmental Site Remediation Union Pacific Railroad 49 Stevenson Street, 15th Floor San Francisco, CA 94105

Gentlemen:

Subject:

Groundwater Monitoring Wells Sampling & Abandonment

File:

Mead Clark Lumber Company, Third Street, Santa Rosa, Case No.

1TSR016

Southern Pacific Transportation Company, Third Street Property, Santa

Santa Rosa, Case No. 1TSR196

In February 2005, Ms. Norma Jellison contacted me regarding the groundwater monitoring wells installed on railroad property on behalf of the Mead Clark Lumber Company. The wells in question include GW-24 and GW-27 located north of Third Street. The interest in GW-24 and GW-27 relates to a potential change in property title and ownership of the wells.

Wells GW-24 and GW-27 may be properly abandoned because they are no longer needed for the Mead Clark Lumber Company investigation. Prior to abandonment, the wells must be sampled and tested for total petroleum hydrocarbons as gasoline (TPHg), diesel (TPHd), motor oil and the full EPA Method 8260 scan. I have relayed this information to Mr. Brian Wingard of Winzler & Kelly, consultant to the Mead Clark Lumber Company with instructions to proceed with the work.

A separate but related issue is the wells located south of Third Street also installed on behalf of the Mead Clark Lumber Company. These wells must also be sampled. An unresolved issue remains in this area regarding contaminant characterization and responsibility. Total petroleum hydrocarbons as diesel were reported in groundwater in the vicinity of the former railroad underground storage tanks at 14,000 and 6,500 ug/l during the Industrial Compliance phase of work in 1992. Total petroleum hydrocarbons as diesel were not reported during a later phase of work completed by Geomatrix. Total petroleum hydrocarbons as gasoline were detected.

On March 13, 1998, Regional Water Board staff concurred with the Union Pacific proposal to conduct a coordinated sampling event with the consultant for the Mead Clark investigation to

California Environmental Protection Agency

resolve this matter. However, the joint sampling event was not conducted and the issue of diesel verses gasoline has not and must be resolved.

Please take the necessary steps to conduct the coordinated sampling event. Splits samples must be collected from wells GW-26A, GW-35, GW-22 and GW-29 and analyzed by different analytical laboratories. Well GW-29 was installed as an extraction well and is screened across two permeable water-bearing zones. Therefore, standard purge methods may not be appropriate for this well for characterization of the shallow water-bearing zone. In addition, MW-1, installed by North Coast Regional Water Quality Control Board (MW-1) should also be sampled.

The analytical report is due within 60 days of issuance of this letter. Please contact me in advance of the scheduled sampling event so I can conduct a site inspection during field activities and provide you with the key to MW-1.

If you have any questions please call me at (707) 576-2675.

Sincerely,

Joan Fleck

Engineering Geologist

Jon Flak

032905_JEF_Meadclarkwells

Cc: Fire Inspector Andrea Jensen, Santa Rosa Fire Department

Ms. Laura Kennedy, Kennedy/Jenks, 622 Folsom Street, San Francisco, CA 94107

Ms. Norma Jellison, Golden Gate Bridge Highway & Transportation District, 1011 Anderson Drive, San Rafael, CA 94901-5381

Mr. Brian Wingard, Winzler & Kelly, 495 Tesconi Circle, Santa Rosa, CA 95401-4696

WINZLER & KELLY CONSULTING ENGINEERS

Site-Specific Monitoring Well Development Procedures Former Mead Clark Lumber Company Third and Railroad Streets, Santa Rosa, California May 11, 2005

1. Objective

Properly develop monitoring wells prior to sampling.

2. Background

Monitoring wells MW-1, GW-22, GW-26A, GW-29, and GW-35 were redeveloped by Blaine Tech Services because they have not been sampled within the past year.

3. Personnel Required and Responsibilities

<u>Blaine Tech Services Field Technician</u>: The technician performed well development activities in accordance with the procedures outlined below.

<u>Kennedy/Jenks Consultant Registered Geologist</u>: The geologist ensured that the monitoring wells were properly developed and in accordance with the procedures outlined below.

4. Procedures

- Using alconox soap and potable water, all equipment and instruments to enter the wells were cleaned and then rinsed upon arriving at the site.
- All monitoring wells were opened and allowed to equilibrate for a minimum of 15 minutes.
- The volume of standing water in each monitoring well was calculated and recorded on the well development data sheets.
- Alternate surging/swabbing of the screened interval and purging of the water was performed as follows:
 - Surging/Swabbing: A 4-inch surge block was used to swab the screened portion
 of the well. The surge block was lowered to the bottom of the well and rapidly
 raised and lowered in 2-foot intervals in a plunger-like fashion. The surge/swab
 was repeated 15-20 times at each 2-foot interval.
 - Purging: Following each round of surging of the screened interval, the wells were purged of water using a 1.75-inch purge pump. The purge pump was lowered to the bottom of the wells in order to "grab" the silts and clays that had settled.

- In wells with little water or with very poor recharge, potable water was added to the well to ensure adequate development. The volume of water added was documented on data sheets.
- The process was continued until turbidity concentrations were less than 100 NTUs.
- All purge water was transferred to a 2,000-gallon tank secured on site.
- Decontamination of all non-disposable equipment was performed after completion of field work.

5. Equipment Required

- Tool Box
- Disposable Gloves
- Decontamination Supplies
- Water Level Meter
- Measuring Tape
- Indelible marker/Drum Labels
- Surge Block
- PVC Extensions
- Development Pump
- · Bailers and Line
- Several 5-gallon buckets
- Well Development Forms

WINZLER & KELLY CONSULTING ENGINEERS

Site-Specific Groundwater Sampling Procedures Former Mead Clark Lumber Site Third and Railroad Streets, Santa Rosa, California May 20, 2005

1. Objective

Collect representative water level data and groundwater samples.

2. Background

Water levels were measured to determine the groundwater flow gradient and flow direction. Representative groundwater samples from the water-bearing zone were obtained using disposable polyethylene bailers after purging.

3. Personnel Required and Responsibilities

<u>Blaine Tech Services Field Technician</u>: The technician performed water level measurements and purging activities in accordance with the procedures outlined below.

<u>Winzler & Kelly Technician</u>: The technician collected groundwater samples in accordance with the procedures outlined below.

4. Procedures

4a. Decontamination Procedures

- The water level meter and pumps were decontaminated using a steam cleaner upon arriving at the site. The oil/water interface meter was decontaminated using Alconox soap and potable water.
- The meters and pumps were decontaminated following use in each well.
- Nitrile gloves were worn by the technicians when handling equipment and instruments and changed after each use.

4b. Groundwater Elevations

- Each monitoring well was opened and the expandable caps were removed.
- Each well was allowed to equilibrate to atmospheric pressure for a minimum of 20 minutes.
- A water level meter was used to measure the depth-to-groundwater in groundwater monitoring wells.
- The depth, time, and visual observations regarding well access, condition, security, etc., were recorded on the water level data sheet.

4c. Purging

- The meters used to measure indicator parameters were calibrated prior to sampling.
- The volume of standing water in each monitoring well was calculated using the measured depth-to-water and historic depth-to-bottom. The volume was recorded on the Well Sampling Data Sheet for each well.
- Each well sampled was purged of three well volumes using a down-hole 3-inch electric submersible pump attached to plastic tubing, unless the well dewatered before such a volume was purged.
- Conductivity, pH, turbidity, and temperature were monitored at each well casing interval throughout the purging process.
- The time, readings, and visual comments were recorded on the Well Sampling Data Sheet.
- Purge water was transferred to a 2,000-gallon tank stored and secured on site.

4d. Groundwater Sample Collection

- Groundwater samples were collected by lowering previously unused, disposable, polyethylene, bottom-filling bailers into the well after the water level had recharged to at least 80 percent.
- When completely full, the bailer was carefully retracted from the well casing.
- The groundwater from each well sampled was transferred from the bailer into the appropriate sampling containers.
- Upon filling, each vial was immediately capped. The vial was checked for air bubbles by
 inverting and gently tapping the vial. If any bubbles were visible, the vial was refilled and
 confirmed to be free of any air bubbles.
- All samples were labeled with the following information:

Sample ID Date and Time Sample Collected

Location Sampler's Initials

Project Number

- · Sample information was documented on a chain-of-custody form.
- All samples were placed in an ice chest, chilled with ice.
- Upon completion of the sampling activities, each well was closed and secured by replacing the well cap and securing the lock.

5. Equipment Used:

- Disposable gloves
- Potable water
- Alconox soap
- Scrub brushes
- Tools to open wells
- Keys to wells
- Water Level Data Form
- Well Sampling Data Sheet
- Chain-of-Custody Form
- · Water level meter
- Oil / Water Interface Meter
- 3-inch electric submersible pump

- 1.75-inch positive displacement pump
- Ultrameter 6P
- Turbidity Meter
- Disposable bailers (previously unused)
- Monofilament nylon line (50-lb test)
- Scissors
- Sample containers (preserved, as required) provided by the laboratory
- Sample labels
- Ice chest
- Ice
- Labels / Indelible marker
- Trash bags
- 2,000-gallon storage tank
- Ziploc bags
- Nitrile Gloves

WELL GAUGING DATA

Project #	Date 5/11/05	Client Winzfer & lacky
Site 175 RXR 51.	Sanda Persa	

				Thickness	Volume of				
4	Well		Depth to	of	Immiscibles			Survey	
	Size	Sheen/	Immiscible	Immiscible	Removed	Depth to water			
Well ID	(in.)	Odor		Liquid (ft.)	(ml)	(ft.)	bottom (ft.)	or TOC	
						13.78	29.77 29.78 29.12		
14W-1 C=W-22 C=W-26A Gw-29 CEW-35	4					21.83	29.78	TOC	
			-			12.86	29.12	1 1	
5W-12	4					24.97	29.12		_
	i					13,34	30,12		
(7W-LCob)	4					10.00	36.20	 	
. 20	. /					12.50	46.25		
20-69	4		-			24.87	47.60		
	-1					15.45	48.34		
520-35	4					17.70	4877	-	
			.:		-				
	4		: .						-
		<u> </u>							
					•.				
			<u> </u>			Betre			
						After			
•					,				
				· · · · · · · · · · · · · · · · · · ·	-			+	-
		 							

WELL DEVELOPMENT DATA SHEET

Project #:	7530	11-3mi)	/	Client:	Winzler	+ Kelly
Develope		Zen	,	Date Devel		-lulos-
Well I.D.	,			Well Diam		one) 2 3 (4) 6
Total We	ll Depth:			Depth to W		
Before 2	9.77	After 29	7 <i>5</i>	Before 13.	78 Afte	r <i>21.</i> 83
Reason n	ot develop			If Free Pro		
Addition	al Notation	is: <i>Suige c</i>	ol well	10 mins		
Volume Con (12 x where 12 = in	version Factor (VCF) $(d^2/4) \propto \pi$) /231 / foot ameter (in.) 1416). J:	Well dia. VC 2" = 0.1 3" = 0.3 4" = 0.6 6" = 1.4 10" = 4.0 12" = 6.8	F 6 7 5 7		
<i>E</i>	Volume	X	Specified	d Volumes		 gallons -
Purging De	evice:	Bailer Middleburg Type of Insta Other equips	ılled Pump	Electric Subn Suction Pump	p	
TIME	TEMP (F)	pH	Cond. (mS or (LS))	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
1359	46.4	7.1	485	>1000	8	Howo bother Turbed
1407	66.6	7./	493	620	16	D723=17.77
1417	65.8	7.1	485	148	24	Hard bother cleaning
1425	65.6	(e. Es	486	49	<i>3</i> 2	DTW= 21.83
	Chent	CO115, cles	rd ucil	redacky	et after	NTU'S under 100
·						
	1201 1	ettem (an + 1	land		
Did Well De	water?	If yes, note abo)VC.	Gallons Actuall	y Evacuated:	32

WELL DEVELOPMENT DATA SHEET

Decised 1				[a]		
Project #:		5/1-Bull		1	linzkr d	- Kelly
Develope		DM		Date Devel		1/1/05
Well I.D.	- Cour	22		Well Diam	eter: (circle	one) 2 3 4 6
Total We	~			Depth to W	_	
Before ;	29.12	After 29	12	Before 17	. 88 Afte	T 24.97
Reason n				If Free Pro	duct, thickn	ess:
Additiona	al Notation	is: Surge	of well	10 mi	73	
Voluine Can	version Factor (VCF (d²/4) x π} /231):	Well dia. VC 2" ≈ 0.1	F		
where 12 = in.			3" = 0.3 4" = 0.6	55		
$\pi \approx 3.5$			6" = 1.4 10" = 4.0			
231 = in			12" = 6.8	7		
}	2,5	X		10		
1 Case	Volume		Specified	1 Volumes	=	gallons
Purging De	vice:	Bailer		Electric Subr		
		Middleburg	<u>N</u>	Suction Pum	p	
		Type of Insta				
····	1.	Other equipm		Tuge block	<u> </u>	
TIME	TEMP (F)		Cond.	TURBIDITY	VOLUME	
		pΗ	(mS orQIS)	(NTUs)	REMOVED:	NOTATIONS:
1/10	C0578	7.0	(d)d	71000	10.5	Hard botton, Turbid, silly
1/2/	Colo. 4	6.6	627	278	2/	DTW= 15.37
	$\int S_{i}$	utch to	E-5			
11783	665	7.0	617	219	315	Have bottom oleaning
1130	67.0	Co. 7	437	695	42	DTW= 24.95
//32	67.6	Co. Co	638	387	52.5	Clearing
1135	(07.3	Co. 7	Ce3/	127	63	DTW- 24.97
	Jest affe	neting to	desater	but has		recovery rate
1140	67.1	(e.7	629	40	73,5	Clearing
	WTel	(2) (1) day	- Λ	chent	to call	11/1
			/-/			200000000000000000000000000000000000000
		,				
	./.					
Did Well De	Did Well Dewater? NO If yes, note above.			Gallons Actuall	ly Evacuated:	73.5

		WEL.		JEMIEN I	DATA SE	
Project#	: <u>0</u> 525	-11-B/C)	<u> </u>	Client:	Winzler	+ Kelly
Develope		Bill		Date Devel		5/11/05
Well I.D.	- Cru	1-2CeA		Well Diam	eter: (circle	
Total We	ell Depth:			Depth to W	/ater:	
Before 3	0,12	After 30.2	20	Before 13	.39 Afte	er 26.05
Reason n	iot develop			If Free Pro	duct, thickn	less:
Volume Cor {12 x where 12 = in	nversion Factor (VCF (d ² /4) x π) /231 t / foot fameter (in.)	18: Juged	Well dia. VC 2" = 0.1 3" = 0.5 4" = 0.6 6" = 1.4 10" = 4.6 12" = 6.8	CF 6 37 55 47		
10,		X ·				109
1 Case	Volume		Specifie	d Volumes	=	gallons
Purging Do	evice:	Bailer Middleburg		Electric Subr Suction Pum		
	÷	Type of Inst Other equip	alled Pump سent used کِی	we black		
TIME	TEMP (F)	рН	Cond. (mS oras)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
849	44.2	Co. 2	470	7/000	//	Hard botton, Turbed, some 5.1
901	040	6.7	49	194	22	DTW = 14.11
	Switcher	1 to	4.5.			
910	15.4	(e. 7	(37	57,4	33	Mad hoten, cleaning
912	Colo. 2	Ce.Co	452	278	4/4/	D71-20.14
915	lili.7	6.6	661	128	55	Hard better, clearing
917	66.8	4.7	1059	232	Colo	Das-22.94
919	67.0	6.7	640	341	77	Hard bother
922	4.9	4.8	Leley	800	58	DTW = 26.50
974	66.9	6.8	458	692	99	Havel Vatern
924	1109	1.8	(15%	96	109	17W-7805

+ hord

Gallons Actually Evacuated:

109

If yes, note above.

Did Well Dewater? [1/0]

WELL DEVELOPMENT DATA SHEET

Project#	: 050S7	1-BM1"		Client: 6	Vinzler +	Kelly					
Develope		Bai	,	Date Devel	oped: 5	11105					
Well I.D.	Go	U-29		Well Diam	eter: (circle		4) 6				
Total We	ell Depth:			Depth to W	ater:						
Before 4	16.25	After 47.	60	Before /L.	so Afte	r 24.87	:				
Reason n	iot develop			If Free Product, thickness:							
Addition	al Notation	18: <i>Surge</i>	el wel	1 10	min3						
(12 x where	tversion Factor (VCF (d²/4) x π) /231):	$\frac{\text{Well dia.}}{2^a} = 0.1$ $3^a = 0.3$	CF 16							
12 = in d = di π = 3. 231 = in	iameter (in.) .1416		4" = 0.6 $6" = 1.4$ $10" = 4.0$ $12" = 6.8$	17 08	•						
1 Case	₹3 Volume	Х		d Volumes		193 gallons					
Purging Do	evice:	Bailer Middleburg	[]]2k	Electric Subr Suction Pum		<u> </u>					
	÷	Type of Insta Other equipn	nent used ک	surge blee	<u>/z</u>						
TIME	TEMP (F)	Н̈́д	Cond. (mS or (IS))	TURBIDITY (NTUs)	VOLUME REMOVED:	той	ATIONS:				
/ <u>308</u>	66,2	7.6	467	71000	19,3	Hard bottom	Tubid sily				
1322	65.2	(o. Co	489	317	39.6	DTW- 21.28	& Switch to				
132Ce	Ce49	68	532	25	57.9	Hard botten	,				
	With	pre los		cheert	consider						
/			ercloped	-7/(-1/2/	C 07/57 C C 7	<u> </u>	VIII TO VIII T				
	777.5 7.5	GI FECT	CI CI Operox								
					~						
		,									
											
Did Wall D		If yes, note abo		Collons Ass. 1	L. C	585					
ᇣᄱᄬᄣᄔᅜᅊ	swatc(Λ// / −	HLL YES, NOTE ADC	/YG.	Gallons Actual	iy evacuated:	1 7/2					

WELL DEVELOPMENT DATA SHEET

				γ			
Project#		11- BILL!		Client: 6	Uncher +	Kelly	
Develope		BU		Date Deve		11/05	
Well I.D.	(7/1	1-35		Well Diam	eter: (circle	one) 2 3 (4 6
Total We	ll Depth:			Depth to W	/ater:		
Before 4	18.34	After 487	77	Before 12	5.4/5 Afte	er /770	
Reason n	ot develop			If Free Pro			
Addition	al Notation	ns: Surge	(well 10	mins	,		
Volume Car (12 x where 12 = in	version Factor (VCF (d ² /4) x π} /23 i / foot ameter (in.)):	Well dia. VC 2" = 0.1 3" = 0.2 4" = 0.6 6" = 1.4 10" = 4.0 12" = 6.8	2F 6 57 55 7			
2/. 1 Case	Volume	X		O I Volumes		2/4 gallons	
Purging Do	evice:	Bailer Middleburg Type of Insta	□ Æ lled Pump _	Electric Subr Suction Pum	p		
······································	1.	Other equipm		ung block		· · · · · · · · · · · · · · · · · · ·	
TIME	TEMP (F)	Н̈́д	Cond. (mS or (LIS)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTA	ATIONS:
16.21	Cn5.7	7.7	632	157	21,5	Havel botten	Tubjed 5, Hy-
1031	Colo. Co	7.7	626	19	43	DTW= 17.70	S switch to
	/ /	asidero		land	01	ive case	<i>(''</i>
	7	by Ches			0/27		
PARTY NAME OF THE PARTY NAME O	Hell b	then ch	an t	hord.			
Did Well De	ewater? 1/3	If yes, note abo	ve.	Gallons Actual	y Evacuated:	43	

Report Date: June 8, 2005

Pon Xayasaeng Winzler & Kelly Consulting Engineers 495 Tesconi Circle, Suite 9 Santa Rosa, CA 95401-4696

LABORATORY REPORT

Project Name: **Former Mead Clark Lumber** 0242505001.3200

Lab Project Number: 5052005

This 16 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

TPH Gasoline in Water

Lab #	Sample ID	Analysis	Result (ug/L)	RDL (ug/L)
29877	GW-26A	TPH/Gasoline	ND	50

 Date Sampled:
 05/20/05
 Date Analyzed:
 05/20/05
 QC Batch #:
 5540

 Date Received:
 05/20/05
 Method:
 EPA 5030/8015M

 Lab #
 Sample ID
 Analysis
 Result (ug/L)
 RDL (ug/L)

 29878
 GW-35
 TPH/Gasoline
 ND
 50

 Date Sampled:
 05/20/05
 Date Analyzed:
 05/20/05
 QC Batch #:
 5540

 Date Received:
 05/20/05
 Method:
 EPA 5030/8015M

 Lab #
 Sample ID
 Analysis
 Result (ug/L)
 RDL (ug/L)

 29879
 GW-22
 TPH/Gasoline
 ND
 50

 Date Sampled:
 05/20/05
 Date Analyzed:
 05/20/05
 QC Batch #:
 5540

 Date Received:
 05/20/05
 Method:
 EPA 5030/8015M

 Lab #
 Sample ID
 Analysis
 Result (ug/L)
 RDL (ug/L)

 29880
 MW-1
 TPH/Gasoline
 3,700
 100

 Date Sampled:
 05/20/05
 Date Analyzed:
 05/20/05, 05/23/05
 QC Batch #:
 5540

 Date Received:
 05/20/05
 Method:
 EPA 5030/8015M

 Lab #
 Sample ID
 Analysis
 Result (ug/L)
 RDL (ug/L)

 29881
 GW-29
 TPH/Gasoline
 110
 50

Date Sampled: 05/20/05 Date Analyzed: 05/20/05, 05/23/05 QC Batch #: 5540

Date Received: 05/20/05 Method: EPA 5030/8015M

Lab Project #: 5052005

TPH Diesel & Motor Oil in Water

Lab # 29877	Sample ID GW-26A	Analysis TPH/Diesel Motor Oil	Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled: Date Received:	05/20/05 05/20/05	Date Extracted: 05/23/05 Date Analyzed: 05/23/05	QC Batch #: 5544 Method: EPA 3510/80	015M/Silica Clean-up
Lab # 29878	Sample ID GW-35	Analysis TPH/Diesel Motor Oil	Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled: Date Received:	05/20/05 05/20/05	Date Extracted: 05/23/05 Date Analyzed: 05/23/05	QC Batch #: 5544 Method: EPA 3510/80	015M/Silica Clean-up
Lab # 29879	Sample ID GW-22	Analysis TPH/Diesel Motor Oil	Result (ug/L) ND ND	RDL (ug/L) 50 200
Date Sampled: Date Received:	05/20/05 05/20/05	Date Extracted: 05/23/05 Date Analyzed: 05/23/05	QC Batch #: 5544 Method: EPA 3510/86	015M/Silica Clean-up
Lab # 29880	Sample ID	Analysis TPH/Diesel	Result (ug/L)	RDL (ug/L)

Lab #	Sample ID	<u> </u>	nalysis	Result	(ug/L)	RDL (ug/L)
29880	MW-1	TPH/Di	TPH/Diesel		1)	50
		Motor	Oil	N	D	200
Date Sampled: Date Received:	05/20/05 05/20/05	Date Extracted: Date Analyzed:	05/23/05 05/23/05	QC Batch #: Method:		8015M/Silica Clean-up

Lab#	Sample ID	Ar	nalysis	Result	(ug/L)	RDL (ug/L)
29881	GW-29	_	TPH/Diesel		ND	
		Motor	Oli	N	ט	200
Date Sampled:	05/20/05	Date Extracted:	05/23/05	QC Batch #:	5544	
Date Received:	05/20/05	Date Analyzed:	05/23/05	Method:	EPA 3510/80	015M/Silica Clean-up

⁽¹⁾ The sample chromatogram does not exhibit a chromatographic pattern characteristic of diesel. Higher boiling components of weathered gasoline are present.

Volatile Hydrocarbons by GC/MS in Water

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29877	GW-26A	dichlorodifluoromethane	ND	1.0
	O11-20A	chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab # San	nple ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29877 GW	V-26A	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene	ND	1.0	
		n-propyl benzene	ND	1.0	
		2-chlorotoluene	ND	1.0	
		4-chlorotoluene	ND	1.0	
		1,3,5-trimethylbenze	ND	1.0	
		tert-butylbenzene	ND	1.0	
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene	ND	1.0	
		1,4-dichlorobenzene	ND	1.0	
		1,2-dichlorobenzene	ND	1.0	
		p-isopropyltoluene	ND	1.0	
		n-butylbenzene	ND	1.0	
		1,2,4-trichlorobenze	ND	1.0	
		naphthalene	ND	1.0	
		hexachlorobutadien	ND	1.0	
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	ND	25	
		methyl tert-butyl eth	ND	1.0	
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether	•	ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Surrogate	Surrogates Result (ug/L) % Recovery		Acceptance Range (%		
dibromofluorometh	ane (20)	20.7 104		70 – 1	30
toluene-d ₈ (20)		20.1 101 19.0 95.0		70 – 130	
4-bromofluorobenz	ene (20)			70 – 1	30
Date Sampled:05/20/05			QC Batch #:	5542	
Date Received: 05	/20/05	Method: EPA	8260B		

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29878	GW-35	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab#	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29878 GW-35		isopropyl benzene	ND	1.0	
		1,2,3-trichloropropa	ND	1.0	
		bromobenzene	ND	1.0	
		n-propyl benzene	ND	1.0	
		2-chlorotoluene	ND	1.0	
		4-chlorotoluene	ND	1.0	
		1,3,5-trimethylbenze	ND	1.0	
		tert-butylbenzene	ND	1.0	
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene	ND	1.0	
		1,3-dichlorobenzene	!	ND	1.0
		1,4-dichlorobenzene	ND	1.0	
		1,2-dichlorobenzene	ND	1.0	
		p-isopropyltoluene	ND	1.0	
		n-butylbenzene	ND	1.0	
		1,2,4-trichlorobenze	ND	1.0	
		naphthalene	ND	1.0	
		hexachlorobutadiene 1,2,3-trichlorobenzene		ND	1.0
				ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
	methyl tert-butyl ether (MTBE)		•	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sur	rrogates	Result (ug/L) % Recovery Acceptance		Acceptance F	Range (%)
toluene-d ₈ (oromethane (20) 20) orobenzene (20)	20.4 102 20.0 100 18.9 94.5		70 – 130 70 – 130 70 – 130	
Date Sample Date Receive		Date Analyzed: 05/24/05 Method: EPA 8260B		QC Batch #: _	5542

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29879	GW-22	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29879	GW-22	isopropyl benzene		ND	1.0
	011 ==	1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth	•	ND	1.0
		di-isopropyl ether (D	OIPE)	ND	1.0
		ethyl tert-butyl ether	r (ETBE)	ND	1.0
		tert-amyl methyl eth	er (TAME)	ND	1.0
Sı	urrogates	Result (ug/L)	% Recovery	Acceptance F	Range (%)
toluene-d ₈	oromethane (20) (20) uorobenzene (20)	20.7 19.8 19.0	104 99.0 95.0	70 – 1 70 – 1 70 – 1	30
Date Samp Date Recei		Date Analyzed: 05/2 Method: EPA	4/05 8260B	QC Batch #: _	5542

Lab#	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29880	MW-1	dichlorodifluoromethane	ND	1.0
		chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	3.9	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	4.8	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29880	MW-1	isopropyl benzene		39	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		110	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ene	ND	1.0
		tert-butylbenzene		2.8	1.0
		1,2,4-trimethylbenze	ene	ND	1.0
		sec-butylbenzene		15	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		2.8	1.0
		n-butylbenzene		24	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		3.7	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gas	oline Additives		
		tert-butyl alcohol (TE	3A)	ND	25
		methyl tert-butyl eth	•	ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether	•	ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Su	rrogates	Result (ug/L)	% Recovery	Acceptance	Range (%)
toluene-d ₈	oromethane (20) (20) orobenzene (20)	19.9 20.3 20.4	99.5 102 102	70 – 7 70 – 7 70 – 7	130
Date Samp Date Receiv		Date Analyzed: 05/2 Method: EPA	4/05 . 8260B	QC Batch #: _	5542

Lab #	Sample ID	Compound Name	Result (ug/L)	RDL (ug/L)
29881	GW-29	dichlorodifluoromethane	ND	1.0
	511 _ 5	chloromethane	ND	1.0
		vinyl chloride	ND	1.0
		chloroethane	ND	1.0
		bromomethane	ND	1.0
		trichlorofluoromethane	ND	1.0
		1,1-dichloroethene (1,1-DCE)	ND	1.0
		methylene chloride	ND	1.0
		trans-1,2-dichloroethene (trans-1,2-DCE)	ND	1.0
		1,1-dichloroethane (1,1-DCA)	ND	1.0
		cis-1,2-dichloroethene (cis-1,2-DCE)	ND	1.0
		2,2-dichloropropane	ND	1.0
		chloroform (THM1)	ND	1.0
		bromochloromethane	ND	1.0
		1,1,1-trichloroethane (TCA)	ND	1.0
		1,2-dichloroethane (EDC)	ND	1.0
		1,1-dichloropropene	ND	1.0
		carbon tetrachloride	ND	1.0
		benzene	ND	1.0
		trichloroethene (TCE)	ND	1.0
		1,2-dichloropropane (DCP)	ND	1.0
		dibromomethane	ND	1.0
		bromodichloromethane (THM2)	ND	1.0
		cis-1,3-dichloropropene	ND	1.0
		toluene	ND	1.0
		1,1,2-trichloroethane	ND	1.0
		1,3-dichloropropane	ND	1.0
		dibromochloromethane (THM3)	ND	1.0
		tetrachloroethene (PCE)	ND	1.0
		1,2-dibromoethane (EDB)	ND	1.0
		chlorobenzene	ND	1.0
		1,1,1,2-tetrachloroethane	ND	1.0
		ethyl benzene	ND	1.0
		m,p-xylene	ND	1.0
		styrene	ND	1.0
		o-xylene	ND	1.0
		bromoform (THM4)	ND	1.0
		1,1,2,2-tetrachloroethane	ND	1.0

Lab #	Sample ID	Compoun	d Name	Result (ug/L)	RDL (ug/L)
29881	GW-29	isopropyl benzene		ND	1.0
		1,2,3-trichloropropa	ne	ND	1.0
		bromobenzene		ND	1.0
		n-propyl benzene		ND	1.0
		2-chlorotoluene		ND	1.0
		4-chlorotoluene		ND	1.0
		1,3,5-trimethylbenze	ne	ND	1.0
		tert-butylbenzene		ND	1.0
		1,2,4-trimethylbenze	ne	ND	1.0
		sec-butylbenzene		ND	1.0
		1,3-dichlorobenzene)	ND	1.0
		1,4-dichlorobenzene)	ND	1.0
		1,2-dichlorobenzene)	ND	1.0
		p-isopropyltoluene		ND	1.0
		n-butylbenzene		ND	1.0
		1,2,4-trichlorobenze	ne	ND	1.0
		naphthalene		ND	1.0
		hexachlorobutadien	е	ND	1.0
		1,2,3-trichlorobenze	ne	ND	1.0
		Oxygenated Gase	oline Additives		
		tert-butyl alcohol (TE	BA)	ND	25
		methyl tert-butyl eth		ND	1.0
		di-isopropyl ether (D		ND	1.0
		ethyl tert-butyl ether		ND	1.0
		tert-amyl methyl eth	•	ND	1.0
Surro	ogates	Result (ug/L)	% Recovery	Acceptance I	Range (%)
dibromofluoro toluene-d ₈ (20 4-bromofluoro))	20.5 20.0 19.1	103 100 95.5	70 – 1 70 – 1 70 – 1	30
Date Sampled Date Received		Date Analyzed: 05/2 Method: EPA	4/05 8260B	QC Batch #: _	5542

LABORATORY QUALITY ASSURANCE REPORT

QC Batch #: 5540 **Lab Project #:** 5052005

Sample		Result
ID	Compound	(ug/L)
MB	TPH/Gas	ND
MB	MTBE	ND
MB	Benzene	ND
MB	Toluene	ND
MB	Ethyl Benzene	ND
MB	Xylenes	ND

Sample		Result		Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	
29833	CMS	TPH/Gas		NS		
	CMS	Benzene	8.82	10.0	88.2	
	CMS	Toluene	9.28	10.0	92.8	
	CMS	Ethyl Benzene	9.70	10.0	97.0	
	CMS	Xylenes	29.6	30.0	98.6	

	Sample		Result	Spike	%	
Sample #	ID	Compound	(ug/L)	Level	Recv.	RPD
29833	CMSD	TPH/Gas		NS		
	CMSD	Benzene	9.01	10.0	90.1	2.2
	CMSD	Toluene	9.40	10.0	94.0	1.3
	CMSD	Ethyl Benzene	9.80	10.0	98.0	1.1
	CMSD	Xvlenes	29.4	30.0	98.1	0.54

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

Lab Project #: 5052005

QC Batch #: 5544 **Lab Project #:** 5052005

Sample ID MB	Compound TPH/Diesel	Result (ug/L) ND			
Sample ID LCS	Compound TPH/Diesel	Result (ug/L) 2,000	Spike Level 2,730	% Recv. 73.2	
Sample ID LCSD	Compound TPH/Diesel	Result (ug/L)	Spike Level	% <u>Recv.</u> 75.8	RPD 3.4

MB = Method Blank; LCS = Laboratory Control Sample; CMS = Client Matrix Spike; CMSD = Client Matrix Spike Duplicate NS = Not Spiked; OR = Over Calibration Range; NR = No Recovery

QC Batch #: 5542 **Lab Project #:** 5052005

Sample ID	Compound Name	Result (ug/L)
MB	1,1-dichloroethene	ND
MB	benzene	ND
MB	trichloroethene	ND
MB	toluene	ND
MB	chlorobenzene	ND

Lab Project #: 5052005

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	20.0	100	70 – 130
toluene-d ₈ (20)	20.2	101	70 – 130
4-bromofluorobenzene (20)	19.3	96.5	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.
29862	CMS	1,1-dichloroethene	18.1	25.0	72.4
	CMS	benzene	24.0	25.0	96.0
	CMS	trichloroethene	24.4	25.0	97.6
	CMS	toluene	25.5	25.0	102
	CMS	chlorobenzene	23.8	25.0	95.2

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%)
dibromofluoromethane (20)	22.3	112	70 – 130
toluene-d ₈ (20)	22.3	112	70 – 130
4-bromofluorobenzene (20)	19.1	95.5	70 – 130

Sample #	Sample ID	Compound Name	Result (ug/L)	Spike Level	% Recv.	RPD
29862	CMSD	1,1-dichloroethene	17.5	25.0	70.0	3.4
	CMSD	benzene	23.9	25.0	95.6	0.42
	CMSD	trichloroethene	24.2	25.0	96.8	0.82
	CMSD	toluene	25.5	25.0	102	0.0
	CMSD	chlorobenzene	24.1	25.0	96.4	1.3

Surrogates	Result (ug/L)	% Recovery	Acceptance Range (%
dibromofluoromethane (20)	22.1	111	70 – 130
toluene-d ₈ (20)	22.2	111	70 – 130
4-bromofluorobenzene (20)	19.2	96.0	70 – 130

 $\label{eq:mb} \begin{tabular}{ll} MB = Method Blank; \ LCS = Laboratory \ Control \ Sample; \ CMS = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ CMSD = Client \ Matrix \ Spike; \ Duplicate \ NS = Not \ Spiked; \ OR = Over \ Calibration \ Range; \ NR = No \ Recovery \end{tabular}$

Lab Project #: 5052005

Analytical Sciences

DY	0242565001. 3200	GEOTRACKER EDF: Y X N	GLOBAL ID:	COOLER TEMPERATURE Blue tee °C	COC PAGE / OF		COMMENTS SAMPLE	please 29877	USE Silica 27878	clean-up 25	for motoroil 25880	29 881	The Rock	. project	- Tro-wasters				20,05 11.0	DATE
JS							TOTAL LEAD												. 2	
OF CU.	NUM				X		CAM 17 METALS / 5 LUFT METALS												3	
ROJEC	ROJEC	k one)		URS	MAL		PESTICIDES / PCB'S EPA 8081 / 8141/ 8082												TORK	
A8 P.	LLY Pr	chec		24 HOURS 72 HOURS	NORMAL	S	TRPH / TOG SM 5520F / EPA 418.1M												ABORA	
IN OF CU.	WINZLER & RELLY PROJECT NUMBER:	TURNAROUND TIME (check one)		1 1	1 1	ANALYSIS	SEMI-VOLATILE SEMI-VOLATILE HYDROCARBONS TO SEMI-VOLATILE						-						RECEIVED BY LABORATORY;	32
<	WINZ	ROUN				A	CHLORINATED SOLVENTS												RECEIV	SIGNATURE
A	3	URNA		> m	5		EPA 8260B OXYGENATED FUEL ADDITIVES								-			RES		
I		1	MOBILE LAB	SAME DAY 48 HOURS	5 DAYS		HTEX & OXYGENATES + PB SCAVENGERS						1					SIGNATURES		
0			Мови	SAN 48			VOLATILE TYDROCARBONS TO THE TRANSPORT T	×				7						SIGI	力	
							I Jacabu Hat JIO ROTOM M2108 A43	×	-	_		7							SARING Lead	TIME
		S		000	roley		TPH/GAS/ IDMEX SCHAMING EPA, 8015M/88220	X				>							MASARWA NELEOR	
		GINEER		wis: 6	Leunedy		PRESV.	3/1	-			7							353	
94975-0336 CA 94952	N	TING EN	E 3	0.4	6 co : 1		CONT.	6	1	P	11	n							3 2 Con	DATE
	MATION	CONSUL	95401-469	3	2000		MATRIX	3	-		_	7							BY:	
lytical Scier 36, Petaluma, C Street, Petalum (707) 769-3128	VFOR	KELLY	N CIRC	200	629		ТІМЕ	4.57	40,01	10:22	W:01	1.03							SAMPLED BY:	
Analytical Sciences 75036, Petaluma, CA 946 Perty Street, Petaluma, CA (707) 769-3128 Fax (707) 769-8093	CLIENT INFORMA	NZLER &	SANTA ROSA CA 95401-4696	legalts Sonye	(707) 527-8679		DATE	5/2/05/9:5				->								
Analytical Science Analytical Science A 10. Box 750336, Petaluma, CA 110 Liberty Street, Petaluma, (707) 769-3128 Fax (707) 769-8093	CL	COMPANY NAME: WINZLER & KELLY CONSULTING ENGINEERS	ADDRESS: 495 LESCONI CIRCLE,	CONTACT:	FAX #: (707) 527-8679		CLIENT SAMPLE I.D.	GW-76A	1	Gw-22	AAM-1	GW-29							RELINQUISMED BY:	5
501		0					ITEM	-	2	6	4	2	9	7	go go	10	=		RELIN	SIGNATURE

PO Box 750336 Petaluma, CA 94975-0336 Telephone: (707) 769-3128

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

Former Mead Clark Lumber, Well Measurement File,

5/20/05

Submittal Date/Time: 8/12/2005 10:47:06 AM

Confirmation

3914600968

Number:

Back to Main Menu

Logged in as WINZLER (AUTH_RP)

CONTACT SITE ADMINISTRATOR.